Drought-resistant fungi control soil organic matter decomposition and its response to temperature
ثبت نشده
چکیده
Microbial-mediated decomposition of soil organic matter (SOM) ultimately makes a considerable contribution to soil respiration, which is typically the main source of CO2 arising from terrestrial ecosystems. Despite this central role in the decomposition of SOM, few studies have been conducted on how climate change may affect the soil microbial community and, furthermore, on how possible climate-change induced alterations in the ecology of microbial communities may affect soil CO2 emissions. Here we present the results of a seasonal study on soil microbial community structure, SOM decomposition and its temperature sensitivity in two representative Mediterranean ecosystems where precipitation/throughfall exclusion has taken place during the last 10 years. Bacterial and fungal diversity was estimated using the terminal restriction fragment length polymorphism technique. Our results show that fungal diversity was less sensitive to seasonal changes in moisture, temperature and plant activity than bacterial diversity. On the other hand, fungal communities showed the ability to dynamically adapt throughout the seasons. Fungi also coped better with the 10 years of precipitation/throughfall exclusion compared with bacteria. The high resistance of fungal diversity to changes with respect to bacteria may open the controversy as to whether future ‘drier conditions’ for Mediterranean regions might favor fungal dominated microbial communities. Finally, our results indicate that the fungal community exerted a strong influence over the temporal and spatial variability of SOM decomposition and its sensitivity to temperature. The results, therefore, highlight the important role of fungi in the decomposition of terrestrial SOM, especially under the harsh environmental conditions of Mediterranean ecosystems, for which models predict even drier conditions in the future.
منابع مشابه
Is resistant soil organic matter more sensitive to temperature than the labile organic matter?
A recent paper by Knorr et al. (2005a) suggested that the decomposition of resistant soil organic matter is more temperature sensitive than labile organic matter. In Knorr et al.’s (2005a) model, the reference decay rate was presumed to be same for all pools of soil carbon. We refit Knorr et al.’s (2005a) model but allow both the activation energy and the reference decay rate to vary among soil...
متن کاملThe temperature sensitivity of soil organic carbon decomposition is not related to labile and recalcitrant carbon
The response of resistant soil organic matter to temperature change is crucial for predicting climate change impacts on C cycling in terrestrial ecosystems. However, the response of the decomposition of different soil organic carbon (SOC) fractions to temperature is still under debate. To investigate whether the labile and resistant SOC components have different temperature sensitivities, soil ...
متن کاملTemperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward
The response of soil organic matter (OM) decomposition to increasing temperature is a critical aspect of ecosystem responses to global change. The impacts of climate warming on decomposition dynamics have not been resolved due to apparently contradictory results from field and lab experiments, most of which has focused on labile carbon with short turnover times. But the majority of total soil c...
متن کاملOrganic Matter Decomposition following Harvesting and Site Preparation of a Forested Wetland
Organic matter accumulation is an important process that affects ecosystem function in many northern wetlands. The cotton strip assay (CSA) was used to measure the effect of harvesting and two different site preparation treatments, bedding and trenching, on organic matter decomposition in a forested wetland. A Latin square experimental design was used to determine the effect of harvesting, site...
متن کاملEffects of Manipulated Above- and Belowground Organic Matter Input on Soil Respiration in a Chinese Pine Plantation
Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011